5 problems, total 100%

- 1. (20 %) State and prove the uniqueness of the solutions of the Poisson equation with the Dirichlet and Neumann boundary conditions.
- 2. (20%)Consider a potential problem in the half-space defined by $z \ge 0$, with Dirichlet boundary conditions on the plane z = 0 (and at infinity).
 - (a) Write down the appropriate Green function $G(\mathbf{x}, \mathbf{x}')$.
 - (b) If the potential on the plane z = 0 is specified to be $\Phi = V$ inside a circle of radius *a* centered at the origin, and $\Phi = 0$ outside that circle, find an integral expression for the potential at the point *P* specified in terms of cylindrical coordinates (ρ, ϕ, z) .
 - (c) Show that, along the axis of the circle ($\rho = 0$), the potential is given by

$$\Phi = V\left(1 - \frac{z}{\sqrt{a^2 + z^2}}\right)$$

(d) Show that at large distances $(\rho^2 + z^2 \gg a^2)$ the potential can be expanded in a power series in $(\rho^2 + z^2)^{-1}$, and that the leading terms are

$$\Phi = \frac{Va^2}{2} \frac{z}{(\rho^2 + z^2)^{3/2}} \left[1 - \frac{3a^2}{4(\rho^2 + z^2)} + \frac{5(3\rho^2 a^2 + a^4)}{8(\rho^2 + z^2)^2} + \cdots \right]$$

Verify that the results of (c) and (d) are consistent with each other in their common range of validity.

- 3. (20%) Consider a localized charge distribution $\rho(\mathbf{x})$ that gives rise to an electric field $\mathbf{E}(\mathbf{x})$ throughout space.
 - (a) (8%)Show that the integral can be written as :

$$\int_{r< R} \mathbf{E}(\mathbf{x}) d^3 x = -\frac{R^2}{3\epsilon_0} \int d^3 x' \frac{r_{<}}{r_{>}^2} \mathbf{n}' \rho(\mathbf{x}') \ .$$

(b) (6%) Consider that the sphere of radius R completely encloses the charge density or the charge locates all exterior to the sphere of interest, separately. Verify that

$$\int_{r < R} \mathbf{E}(\mathbf{x}) d^3 x = -\frac{\mathbf{p}}{3\epsilon_0} ,$$
$$\int_{r < R} \mathbf{E}(\mathbf{x}) d^3 x = -\frac{4\pi}{3} R^3 \mathbf{E}(0)$$

(c) (6%)From the results of (b), show that the dipole field should be written as

$$\mathbf{E}(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \left[\frac{3\mathbf{n}(\mathbf{p} \cdot \mathbf{n}) - \mathbf{p}}{|\mathbf{x} - \mathbf{x_0}|^3} - \frac{4\pi}{3} \mathbf{p} \delta(\mathbf{x} - \mathbf{x_0}) \right] .$$

- 4. (15%) Starting from the Biot and Savart law for a static magnetic field, derive the Ampere equation, $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$.
 - (Hint: $\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{x}') \times \frac{\vec{x} \vec{x}'}{|\vec{x} \vec{x}'|^3} d^3 \vec{x}'.)$
- 5. (a) (10%) Starting from the Maxwell equation, show that the vector potential $\vec{A}(\vec{x},t)$ and scaler potential $\phi(\vec{x},t)$ satisfy the equations subject to the Lorentz gauge condition:

$$\begin{cases} \nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}, \\ \nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \end{cases}$$

(b) (10%) In the case of time harmonic source, $(\rho(\vec{x},t) = \rho(\vec{x})e^{-i\omega t}, \vec{J}(\vec{x},t) = \vec{J}(\vec{x})e^{-i\omega t})$ show that the vector potential $\vec{A}(\vec{x},t)$ can be solved as

$$\vec{A}(\vec{x},t) = \vec{A}(\vec{x})e^{-i\omega t}$$
, where $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi}\int \vec{J}(\vec{x}')\frac{e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|}d^3\vec{x}'$.

Hint: You may directly use the expression of the Green's function,

$$G^{\pm}(\vec{x},t;\vec{x}',t') = \frac{\delta(t' - [t \mp \frac{|\vec{x} - \vec{x}'|}{c}])}{|\vec{x} - \vec{x}'|}.$$

(c) (5%) Derive the the expression for $\vec{A}(\vec{x})$ in the limit $kr \to \infty$.